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Abstract 

The inverse Fourier transform is a most prominent and 
widely used tool in crystallography. Used to retrieve Patter- 
son densities and densities from measured intensities or 
phased structure factors, it is well known to suffer from 
major drawbacks among which is the neglect of known 
error bars. In this paper, it is shown how to incorporate 
measured experimental error bars in the computation of 
the Fourier syntheses. This simple novel procedure should 
be useful when a proper maximum-entropy analysis proves 
infeasible, due to either a high dynamical range of the data 
or a high dimension of the direct space in which the density 
is sought (at least five or six dimensions for quasicrystal- 
lography). 

Introduction 

It is first shown that the standard procedure to retrieve p(r) 
from a noiseless finite set of structure factors minimizes the 
functional j" pZ(r) dr subject to two types of constraints: the 
N given independent structure factors and the symmetry 
requirements. When the structure factors are known within 
error bars, the constraints on the structure factors are turned 
very naturally into the weaker constraint (or restraint) that 
X 2 be less than or equal to N. An example is given. 

Notations and definitions 

Let ~ be the space group of a given crystal X, ~- the pure 
translation group, G = ~ / ~  the related factor group of 
order g. In the case of Patterson-density retrievals, the space 
group of the vector set of the crystal has to be considered 
instead (Buerger, 1959). Le tR = (~, I~) represent an element 

= (t~, 13)J- of <g, so that Rr = c~r+ [3, where r belongs to 
direct space, of dimension n. Let the volume V of the 
n-dimensional unit cell be divided into M pixels pj ( j  = 
1 , . . . ,  M) of volume A = V/M.  Let the value of the  sought 
density p(r) be pj in pixel pj centered at rj. 

Moreover, let N symmetrically independent data points 
(Dk, Ok) be related to the scattering vectors K k where 
k - 1 , . . . ,  N, D k stands either for a phased structure factor 
Fg or  for the s q u a r e  IF k]2 of its modulus, and trk is the 
corresponding measured or estimated error bar. 

For the sake of simplicity, the validity of Frieders law 
will be assumed throughout this paper, namely that F*(K) = 
F ( - K )  holds for any scattering vector K. Hence, only F(K) 
or F ( - K )  must be considered for each K. This assumption, 
which rules out X-ray anomalous scattering, is certainly 
well justified for neutron nuclear or magnetic diffraction. 
Next, let g(K) be the degeneracy factor associated with the 
star of K. This degeneracy factor is the number of symmetry 
operations (rotations) in Fourier space which leave K 
invariant. 
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Finally, let the computed structure factor F~ be defined 
by 

F~ = F(Kk) = [ e x p  {27riKk- r}p(r) dr 

M 

= Y. exp {27riKk" rj}p(rj)A 
j = t  

M 

= Y. Ak,  jp j .  
j = l  

Without loss of generality, we shall limit ourselves to the 
retrieval of the density p(r) from a finite set of complex 
structure factors Fk in what follows. 

The standard inverse Fourier transform as the result of a 
constrained minimization procedure 

Minimizing a functional under constraints or restraints is 
done via the use of a Lagrangian and Lagrange multipliers. 
In order to allow for numerical computations, the quadratic 
functional S P2(r) dr mentioned above must be replaced by 

2 its discretized form Y~j~t & .  In this case, our proposed 
Lagrangian reads 

LP = 5-'. p~+E aklF~-Fkl2+EE#j,,.j(pj-p,,). (1) 
j k Jo J 

The first term on the right-hand side is the functional to be 
minimized. 

Why minimize 5p=(r)dr.'? Besides its practicality, this 
choice is reasonable since, making use of Parsevars 
theorem, minimizing the proposed functional amounts to 
minimizing the integrated power spectrum of the sought 
density p(r). Among all possible densities compatible with 
the constraints, we look for the most featureless one in 
some sense. 

The second term ensures that the structure factors F~ 
computed from the solution p(r) will be equal to the 
measured known structure factors Fk. The third term 
ensures that the symmetry constraints are obeyed: the value 
p/ of the density must be the same in all pixels P1 which 
are related to a given pixel pj,, by a symmetry operation. 
Hence, the last term in the above expression involves the 
double sum over symmetrically independent pixels pj,, inside 
the unit cell, and then over all pixels pj symmetrically related 
to & .  Let •j, be the set of the latter. At the minimum, one 
obtains for each pixel pj belonging to Uj,: 

a ~  
- 2• + E  ak [A* j(F~. - Fk)+ Ak.i(Fk* -- F*)] 

O& k 

+/.tj,,.j - 6j.i, ' Y /a.j,,,j = 0 (2) 
p~ E ~ql 

where 8hi " is a Kronecker delta and has value 1 or 0. The 
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next step is to average the above equality over all pj belong- 
ing to ~?jo to eliminate the /Zjo, j. This procedure yields 
averaged Ak, j, which are in fact equal to averages (Akd)  
over the g symmetry operations of the factor group G: 

(ak, j) =1 ~ exp{2~riKk(~srj+l~s)}A. (3) 
g s = l  

The N Lagrange multipliers Ak are determined by the N 
conditions F~ = Fk. 

E Ako.j(A~,j) 
J 

g M 
= ( l / g )  E E exp {2"mKko" rj} 

s = l  j = l  

x exp {--2WiKk(&srj + I~s)}A 2 

g 

= (A2/g) E exp {--2¢riKk- [3s} 
s = l  

M 

x Y, exp {2wi(Kko-- k]-lKk) • rj} 
j = !  

g 

= ( v .  a ) / g )  2 exp{-Z0riKk. ~}6~K~o,K ~ 
$=1 

g 

= ( v .  A/g)  E exp {--2wit~Kko • [3~}6~K~o,K ~. (4) 
s = l  

Because only symmetrically independent scattering vectors 
are considered, the above expression is zero unless k =/Co. 

It has been known for some time (Waser, 1955) that, in 
our notation, 

F(t~K) = exp {2"rri~K • I~}F(K). (5) 

Consequently, if K is not ~ rb idden  by extinction rules, 
exp {2wikK. 13} = 1 for all R for which t~K= K. Finally, 

y, ako, j ( a~ j )  = VA[g(Kko/g)]Sko, k (6a) 
J 

and, for the acentric ease, 

Y" Ako, j(Ak, j) = VA[g(Kko)/g]Sko, keko (6b) 
j . 

where ego = e(Kko) is equal to 1 if --Kko belongs to the star 
OfKko, and is equal to zero otherwise. The Ak are determined 
by 

M 

Fk = F~k = ~., Ak, jPj 
j = l  

= - VA[g(Kk) /g](F~k  - Fk))tk[(1 + ek) /2]  

for the acentric case; (7a) 

= - Va[g(Kk) /g] (F~k  -- Fk)Ak 

for the centrosymmetric ease. (7b) 

The final result reads 

N 

pj = (1/V) ~ [ g / g ( K k ) ]  
k = l  

x [((Ak, s )* /A)Fk  + ((Ak, j ) / A ) F * ] / ( 1  + ek) 

for the acentric case; (8a) 
N 

= ( l / V )  Y', [ g / g ( K k ) ] ( ( A k j ) / A ) F k  
k = l  

for the centrosymmetric ease. (8b) 

We have shown in a previous paper (Papoular, 1991) that 
the inverse Fourier transform can be expressed using 
averaged exponentials over all symmetry operations of the 
relevant space group. 

R e m a r k  1: From (7a) or (7b) all the Ak are infinite, so 
that the products (F~k -- Fk)hk should be finite and non-zero. 

R e m a r k  2: In (1), as many Lagrange multipliers were 
introduced as there are rigid linear constraints (noiseless 
structure factors or symmetry relations). The constraints 
over the structure factors were chosen to be nonlinear via 
the square of the moduli of the deviates in order to keep 
the Lagrangian ~ real, which ensures that Friedel's rule is 
automatically satisfied. A second reason to use this formula- 
tion is its obvious similarly to X 2. 

R e m a r k  3: The linearity of the constraints relative to the 
structure factors could have been preserved through the 
introduction of two real Lagrange multipliers for each 
independent scattering vector: one, h ~, for the real part of 
the deviate Re ( F ~ - F k ) ,  and a second one, A~, for the 
imaginary part of the deviate Im (F~k-  Fk). After introduc- 
tion of the complex Lagrange multiplier A k = A~ + i)t~ and 
its conjugate )t*, the related term of ~ now reads: 

[Ak(F~ -- F'k) + h *k ( F~k -- Fk ) ]. Elementary algebra yields 
exactly the same result (8a) and (8b) as already obtained 
above, albeit with finite Lagrange multipliers. 

Generalization of the variational procedure to include the 
experimental error bars 

The generalization is straightforward: let us simply replace 
the constraints over the Fk by a single restraint over X 2 
which we require to be less than or equal to N, the number 
of independent data points. 

Our proposed Lagrangian now reads: 

s (9) 

The computations run almost identically to the previous 
noiseless case, yielding: 

M 

F~k = E Ak, jflj 
j = l  

= - VA[g(Kk) /g][(F~k - Fk)/o'E]A[(1 + ek)/2] 

for the acentric case; (10a) 

= _ VA[g(Kk) /g][(F~k -- Fk)/Cr2k]h 

for the centrosymmetric case. (10b) 

Finally, one arrives at: 

[(F~k-- Fk)/Crk]=--Fktrk{Cr2k + Ug(Kk) [ ( l  + ek) /2]}  -1 (11) 

where U = A(VA/g) for both the centrosymmetric and the 
acentric cases. 

Note that U = 0 corresponds to the constant density p(r) 
which is equal to 0 everywhere, whereas U = oo corresponds 
to the standard inverse Fourier density which ignores the 
error bars. U is derived from the restraint X 2 = N, or X 2 --- 
X 2 - N = 0, i.e. 

N 
2 2 2 x ~ ( U ) =  E Ifk[ crk{~r~ + Ug(Kk)[(1  + e k ) / 2 ] }  - 2 -  N = 0 .  

k=l (12) 

Solving for  U. The procedure is iterative. Set Uo = 0. 
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Note that if X~v(0) -- 0 the measured Fourier components Table  1. 
are smaller than their error bars on average. In this case, 
since it obeys all the constraints/restraints and minimizes h k l gK 

p2(r) dr, the preferred density p is constant and equal to 0 0 1 4 
0 0 2 4 zero unless N is replaced by a smaller number, closer to 0 0 3 4 

the number of 'good' independent data measurements 0 0 4 4 
(Gull, 1989). Conversely, if XZN(0)> 0, then, due to both 0 0 5 4 
the convexity of the functional ~p2(r)dr and that of 0 0 6 4 
x Z [ { p ( r ) } ] ,  the solution p(r) exists, is unique and is such 0 0 7 4 
that%2 N. 0 0 8 4 

= 1 1 0 4 
Assuming now that X~v(0)> 0, find the smallest U1 = 2 p, 1 1 1 2 

where p is a positive integer and for which x ~ ( U t ) < 0 .  1 1 2 2 
Then dichotomize between the bracketing values Uo and 1 l 3 2 

1 1 4 2 
Ut towards the unique positive solution U~. 1 1 5 2 

Let us consider the acentric case first. Now that U and l l 6 2 
hence A are known, the final result reads: 2 2 0 4 

N 
p j = - ( A / 2 )  ~ {A*k , j [ (F~-Fk) /O '~]  

k=l 

+ ak, j[( F~k- Fk)*/O'Zk]} 
N 

= ( l / V )  ~, [g/g(Kk)] 
k=l 

× {[((Ak.j)*/A)Fk + ((Ak. j ) /A)F*]/(1 + ek)} 
2 2 x(1-crg{o 'k+  Ug(Kk)[( l+ek) /2]}  -I) (13a) 

The following similar formula holds for the centrosym- 
metric case: 

N 
pj = - A  Y, ak.j[F~ - Fk]/o'Zk 

k=l 

N 
=(l/V) Z [g/g(Kk)]((Ak.j)/A)Fk 

k=l 

x{1 2r 2+ 1 --O'ktO'k Ug(Kk)]- }. (13b) 

Discussion and example 

From Parsevars theorem, minimizing the functional 
j p2(r) dr amounts to minimizing the integrated power spec- 
trum of the density p(r), i.e. the sum of the squares of the 
moduli of all structure factors. Our generalized formulation 
is thus to minimize the latter, given the knowledge at hand: 
experimental data, symmetry, Frieders law and so on. As 
a result of our procedure, unknown Fourier components 
are taken to be zero. Thus, our procedure does not take 

B 

A 

(a) 

Cu I 

(b) 

Fig. 1. YBa2Cu307 at 30 K: comparison of the spin density projec- 
ted along the [1]0] direction (a) by standard Fourier inversion 
and (b) by our suggested procedure, which incorporates experi- 
mental error bars. Note the disappearance of the spurious peak 
at A. 

Data  set for  YBa2Cu307 used in example  

]~-,calc ~K ff~eas --K 

0.000231 0.000482 0.000430 
0.000240 0.001422 0.001257 
0.000246 0.001862 0.001636 
0,000381 0.000489 0.000367 
0.000378 0.001046 0.000789 
0.000407 0 . 0 0 1 8 3 1  0.001328 
0.000468 0.000366 0.000244 
0.000587 0.001030 0.000576 
0.000460 0.002123 0.001431 
0.000597 0.000998 0.000380 
0.000658 -0.000215 -0.000072 
0.000486 0.001697 0.000816 
0.000804 -0.000456 -0.000115 
0.000702 0.000886 0.000272 
0.000487 0.001932 0.000927 
0.001049 -0.000126 -0.000036 

care of truncation effects. The expression of the density in 
the noisy case is very similar to the noiseless case except 
that each measured Fourier component is now multiplied 
by a positive correcting factor, which is close to unity if 
the related error bar is small and close to zero otherwise. 
The practical effect of our procedure is to remove the 
inaccurate components from the standard Fourier synthesis. 

Consider the following example, pertaining to the pro- 
jected magnetization density along [170] of YBa2Cu307 at 
30 K, taken from the work of Boucherle et al. (1990). The 
data set consists of 16 independent Fourier components 
(see Table 1). We neglect twinning effects and assume that 
the pseudosymmetry belongs to the centrosymmetric case 
(space group P4/mmm).  Only eight symmetry operations 
are compatible with the projection, namely xyz, xyz, xy~, 
2.9z, yxz, y~z, yx2 and .9.2Y,. U is equal to 0.10944 x 10 -6. The 
volume V of ( 13 b) must be replaced by the projected surface 
S of the unit cell. The assumed noiseless (a) and the noisy 
(b) Fourier syntheses are shown in Fig. 1. Our procedure 
gets rid of the spurious peak at A. Nevertheless, truncation 
effects remain, in particular the peak at B. It is well estab- 
lished that maximum entropy eliminates truncation series 
effects. In the present example, it can and should be used, 
albeit at a much higher computing cost: maximum entropy 
wipes out the peak at B as well as all the remaining trunca- 
tion effects (Papoular & Schweizer, 1991). 

The author thanks Professor M. Lambert (LLB) for sup- 
port, Dr J. Schweizer (CEN/G)  for motivating this work 
and providing the data set used therein, Professor W. Prandl 
(Universit~it Tfibingen) for stimulating discussions and 
Professor G. Heger (LLB) for a critical reading of the 
manuscript. 
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